If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30x^2-30x-10=0
a = 30; b = -30; c = -10;
Δ = b2-4ac
Δ = -302-4·30·(-10)
Δ = 2100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2100}=\sqrt{100*21}=\sqrt{100}*\sqrt{21}=10\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-10\sqrt{21}}{2*30}=\frac{30-10\sqrt{21}}{60} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+10\sqrt{21}}{2*30}=\frac{30+10\sqrt{21}}{60} $
| -1/3y+2/9=1/2 | | 18f=-2016 | | 3(3x-1)=9x-1 | | y+11+1=4y | | 1/2x-4=1/3x-2 | | 4y+1=y+11 | | -5x-2(-6+2)=-46 | | 2(7-x)=4x=20 | | -9/8=-m-1/2m | | 1/4=5/2a+1 | | 3x2–5x+2=0 | | 3x+3+x=9 | | 0=2,5x^2 | | 5x-10+2x+50=180 | | 9x+1/4-x=5 | | 8(6x-5)=-24 | | y+10y+21y=0 | | 3/2x+7=29 | | 3n+2n=75 | | 3x+15-x=12 | | 3x+15-x=10 | | X^2+(√x)^2-6=0 | | 3x+15-x=9 | | 3-x+10x=15 | | 15x-6+x=8 | | 15z-2z+z=5 | | 15x+x-3=5 | | 23=2x-4 | | 43^5x=23 | | 1/2(2x+12)=3 | | 10x-20-6x-42=3x-12+60 | | 1/3(12x+7)=2 |